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Weber’s parabolic cylinder functions U(a, x), V(a, x), and W(a, +x) have recently found 
wide applications as approximations to quantum mechanical and semi-classical wavefunctions 
propagating through potential wells or barriers. Available algorithms for their numerical 
evaluation are in.applicable in some ranges of the two arguments. In this paper we present a 
new algorithm, based on the combined use of F. W. J. Olver’s (L Res. Nat. Bur. Stand. Sect. 
B 63 (1959), 131) uniform asymptotic expansions and E. T. Whittaker’s (Proc. Londor? Math. 
Sot. 35 (1903), 417) complex recurrence relations, to extend their range of usefulness. Wsing 
double precision arithmetic, the algorithm generates greater than singie precision values of rhe 
functions and their derivatives on a Univac 1182. 

I. INTRODUCTION 

As approximations to wavefunctions in quantum mechanical calculations, 
parabolic cylinder functions have received considerable attention, They are 
WKBJ-type problems involving two or more transition or turning points 12, 5, 6, 81, 
12, 15, 20, 22, 26-291. They have also recently been employed in a ~n~t~rn 
theory to describe proton transfer reactions in double well potentials [31]. 
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interest in the evaluation of these functions grew out of our work on piecewise 
analytical solutions for the Schroedinger equation [9, 10, 161 whereby we approx- 
imate the potential locally by a polynomial function. We then use the continuity 
conditions to form the complete wavefunction as a composite of the local 
wavefunctions. Previously, we had been able to use only piecewise linear polynomial 
approximations, giving rise to a basis of Airy functions. A more accurate approx- 
imation to the potential can be formed by a quadratic polynomial. The resulting 
wavefunction is a solution of Weber’s complex linear second-order differential 
equation [ 301, 

-$0,(z)+ v++-+z2 ( 1 D”(Z) = 0. 
D,(z) is Whittaker’s notation for parabolic cylinder functions, and its value is deter- 
mined upon specifying a point in the two dimensional complex space [z, v). D,(z) is 
an entire function of both variables. Throughout the next v and z will denote complex 
variables while their real counterparts will be denoted a, a real parameter, and x a 
real independent variable. It is clear that for special values of the variables (x, a), 
(1.1) can be transformed into either the equation for the generalized harmonic 
oscillator functions, which we write as U(a, x) and V(a, x), or the equation for 
propagation through a potential barrier, with a set of solutions lV(a, ZIZX). 

To allow the greatest flexibility on using (1.1) or specifically its two distinct real 
forms as approximations to more complicated differential equations, we must be able 
to evaluate these functions for arbitrary values of v and z (a and x). The number of 
numerical studies on the Weber functions is voluminous [ 1, 8, 13, 14, 18, 21-25,281. 
While there exist asymptotic formulas for large magnitudes of the parameter v and/or 
the spatial variable z, and power series for small magnitudes of v and z, there are still 
ranges for which, heretofore, no accurate or convenient means of evaluation existed. 
Extrapolation from a table of values [8, 181 is both inefficient and inconvenient. 
Employing an algorithm developed by Gordon, integral representations for the 
U(a, x) and V(a, x) have been evaluated by Gaussian quadrature for small values of 
the parameter a (-1.5 < a < 1.8) and large values of x [14,28]. In the case of 
U(u, x), attempts to extend the range of a by direct forward recurrence lead, as to be 
expected (see Section 3), to a loss of accuracy. 

A recent thorough analysis of the asymptotic behaviour (IV] large) of the parabolic 
cylinder functions, and in particular U(u, x), V(u, x), W(u, fx), is in a series of 
papers by Olver [21-231. While his asymptotic representations are valid only for 
large Jv], they have the advantage of being uniform in the spatial variable z. Conse- 
quently we were left only with the problem of devising a convenient method to 
evaluate these functions and their derivatives when the parameters are in the 
moderate range. 

In this paper we present an algorithm for the computation of the parabolic cylinder 
functions U(u, x), V(u, x), W(u, rtx) and their derivatives for arbitrary values of the 
variables. Those regions of the (x, a) plane, previously inaccessible by accurate and 
efficient computational techniques, are covered by a set of complex recurrence 
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relations first derived by Whittaker. For large Ia /, the uniform asymptotic formulas of 
Olver are employed directly, and for moderate 1~11 they are employed to generate 
starting values for the recurrence relations at some large initial indices. The 
recurrence relations are then used directly, either forwards or backwards, to evaluate 
the functions at the desired moderate values of a. In Section 2 we define our choice of 
standard functions for the algorithms. In Section 3 we examine the re~~r~~~~e 
relations and specify the special discrete paths of the complex recurrence index. 
outline the numerical evaluation of U(a, x) and V(a, X) in Section 4 and that of 
W(ff, +x) in Section 5. 

2. CHOICE OF STANDARD FUNCTIONS 

For most physical problems only the two real standard forms of (1.1) are of 
importance. The first, obtained by setting v + f = -a and z =x, is the generalized 
harmonic oscillator equation 

d2D -a- I,&) 
dx2 - (+x2 + u) i,-,,2(x, = 0. 

For standard solutions we take as the two linearly independent solutions U(Q, x) and 
Y(a, x) as defined by Miller [ 17, 181 

U(a, x) = D_,- &), 

V(a,x)=(l,h)r(i +~){D-,~,,~(x)sina~+ D-,-v2(-x>). 

When a + i is zero or a negative integer, U(a, x) can be related to the 
polynomials 

U(--n - I, x) = 2-*2e-x2/4H,(x/fi). (2.4) 

For a negative U(a, x) and V(a, x) are oscillating functions between the turning 
points xTP = f2 6 (see Fig. la), and as pointed out by Miller [ 181 and Olver 1211 
one could replace V(a, x) by the companion solution u((a, x) of equal modulus 

D(a, x) = T($ - a) V(a, x) = U(a, x) tan 7ca + U(a, -x) set 7ra. W$ 

When a + 1 is not zero or a negative integer, U(a, kx) are an alternate 
solutions. In particular for a positive, U(a, x) and U(a, -x) are exponentially 
decreasing and increasing functions, respectively. 

The second standard form, obtained by setting v $ f = -ia and z = xe-xV4 
describes the propagation through or over a parabolic potential barrier 

d2D-ia-~~(xCRJ4) 
dx2 

+ (+x2 -a) D-ia-1,2(xe-ai/4) = 0. 
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FIG. 1. (a) U(a, x) and V(a, x) for a = -2.5 and (b) U(u, x) and U(a, -x) for a = 2.5. Coefficient 
function (ix’ + a) is indicated by broken lines. W(u, x) and W(a, -x) for (c) a = -1 and (d) a = 1. 
Coefficient function (a - $x2) is indicated by broken lines. (e) Components of complex function E(a, x) 
for a g 1. 

In terms of Miller’s notation we have 

U(ia, xeeRu4) = D+- 1,2(xe-Ri’4). (2.7) 

Two real solutions to (2.6), W(a, kx), can be defined in terms of a complex function 
,??(a, x), which with its complex conjugate forms another pair of linearly independent 
solutions: 
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E(~,~)= ~~4+(~2'(d4+*)D_ia_Y2(~e-=i'4), x 

= k- l/2 W(a, x) $ ik1’2 W(a, -x), 

where 4 = arg r(+ + ia) and k = dw - e”‘. The value of 4 is not necessarily in 
the principal range (--71, n], but rather it is defined by continuity with # = 0 ,when 
a = 0 and (s = a In a -a + O(a-‘) as a + $00. 

For a few convenient values of the parameters a, we have plotted in Fig. 1 the 
functions ?J(a, ix), V(a, x), W(a, ix), and the components of E(a, x) with res 
the x variable. We make reference to these graphs in order to emphasize the charac- 
teristic behaviour and disparate nature of the standard. functions. To describe the 
propagation through a potential barrier, the set of functions most closely satisfying 
Miller’s criteria are k-II2 W(a, x) and k+ 1/Z W(a, -x). 

3. RECURRENCE RELATIONS 

The recurrence formulas for the parabolic cylinder function D,(z)~ 

D,+ I(Z) - zD,(z) + @,-,(z> = 0, (3.1) 

D:(z) + (+)D,(z)-vD,_,(z) =O, (3.2) 

D:(z) - W)D,(z~ + Do+ l(z) = Q, 

were derived by Whittaker [32] from the contour integral representation 

O+ 
D,(z) = - 

T(v + 1) e-(1,4)r* 
2*i 

i 

e-“-“l/2’t2(--t)-v-l & 

a, 

- 7~ < arg(-t) < TI, Re(v) < 0. 

ntegration of Eq. (3.4) by parts yields (3.1). ~i~erentiating formally under t 
integral we obtain (3.2). We solve for DuM1(z) from Eq. (3.1) and substitute the 
expression into (3.2) to obtain the last relation (3.3). Unless otherwise states, the 
prime notation will denote differentiation with respect to the independent variable x 
or z, which is indicated in the argument of the function. These relations are valid for 
all complex values of t’ and z. 

When both variables are real, two sets of relations can be derived from 
Eqs. (3.1~(3.3). In terms of the real valued functions U(a, X) and Y(a, X) the 
recursion formulas are as follows: 

U(a - 1, x) - xU(a, x) - (a + -$) U(a + 1, x) = 0, 

U’(a, x) + +xU(a, x) + (a + i) U(a + I, x) = 0, 

U’(a, x) - +xU(a, x) + U(a - 1, x) = 0, 
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V(u + 1, X) -xV(a, x) - (a - f) V(a - 1, X) = 0, (3.8) 

v,(a, x) - fxV(u, x) - (a - 4) V(u - 1, x) = 0, (3.9) 

T(u, x) + $xV(u, x) - V(u + 1, X) = 0. (3.10) 

For moderate values of a, we want to use these recurrence relations to extend the 
range of usefulness of Olver’s [21] asymptotic expansions. In this paper, only direct 
recurrence, forwards or backwards, of relations (3.5) and (3.8) with x > 0 is 
considered. As we will explain in Section 4, the derivatives are used only at the 
beginning and end of the recurrence process. The stable direction in which to use 
these recurrence relations directly is suggested from a graph of U(u, x), V(a, x) vs a 
for constant values x, as in Fig. 2, or by an analysis of the asymptotic form of (3.5) 
and (3.8). To provide a balance among the terms in the relations, the following 
inequalities must hold: 

1 U(u - 1, x)1 > / U(a + 1, x)1 
as u-++co, x>O. 

1 V(u + 1, x)1 > 1 qu - 1, x)1 

For a positive, U(u, x) decays exponentially, and V(a, x) grows exponentially. For a 
negative, they are oscillatory functions whose moduli are either strictly increasing or 
decreasing functions of a. Since direct recurrence is generally stable in the direction 
of increasing function values, relation (3.5) should be started at some large positive 
index a, and recurred backwards (decreasing a) to evaluate U(a, x). Similarly, 
relation (3.8) should be started at some large negative index a- and recurred 
forwards (increasing a) to evaluate V(a, x) (see Fig. 3). 

Being second-order homogeneous linear difference equations, relations (3.5) and 
(3.8) have two independent solutions. To make the above arguments conclusive, it is 
necessary to show in the case of (3.5), for example, that U(u, x) decreases at least as 
fast as any other linearly independent solution. Otherwise contributions from the 

FIG. 2. U(a, X) and V(a, x) as a function of a for fixed values of X. 
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FIG. 3. Typical paths for recurrence index in evaluation of (a) U(a, x) and V(a, x) for a- < a < a, 
and (b) U(L4, xemmU4), where A = a - iN for -40 < ~2 < 20. 

unwanted solution, introduced by rounding errors, can accumulate and destroy the 
accuracy. An independent solution of (3.5) is Miller’s function o(u, x) given in (2.5). 
Upon comparing the asymptotic forms of U(a, x) and o((a, X) for large positive a and 
fixed x > 0 111, one sees that their ratio decay resembles 

. IW¶X)l 
2% 1 qa, x)1 = cos zue -2fix-o(xYL/;j) 

As Miller explained in 111, by recurring Eq. (3.5) backwards from a, %- a, the 
contribution from the dominant solution (with respect to increasing a) is kept 
negligible. In the case of (3.8) another independent solution is Miller’s f~nc~i~u 
a@, x) [ 181, where 
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V(a, x) = 
U(a, x) 

T(f - a) ’ 

For a large and negative and fixed x > 0, V(a, x) and r(a, x) are decreasing 
oscillating functions with equal modulus and a phase difference of z/2. The ratio of 
the two functions is approximated asymptotically by 

lim V(a, 4 N %-((3 I a l/W2’3l - cos((l a lP>n + 71/4) 
b-00 V(a, x) A[--((3 (a //4)7c)u3] sin(([a[/2)7z + 7c/4) ’ 

where Bi and Ai are Airy functions. Contributions from the unwanted solution 
v(a, x) introduced by rounding errors wll be random-like, and their effect will be 
negligible. 

We need not restrict ourselves to direct recurrence only of (3.5) and (3.8). As has 
been pointed out by Miller [19] and Cash and Miller [4] there are many methods 
involving iteration to compute any well-defined solution of a three-term linear 
recurrence relation. However, since Olver’s asymptotic expansions afford us a simple 
means to generate the starting values at a, for arbitrary values of x so that direct 
recurrence could be used in the stable directions, we did not pursue this avenue of 
solution. 

Unfortunately, no analogous set of real recurrence relations is known to exist for 
either set of independent solutions ki1’2 W(a, +x) or E(a, x), E*(a, x). However, we 
observed that since the recurrence relations are valid for complex values of v and z, 
Eqs. (3.1)-(3.3) could be used to recur on D-iA-y2(xe-ni’4), where A is a complex 
parameter, A = a f ilv, N= 0, l,..., IV,,,,, . The raising and lowering of the index is 
now in unit intervals along a line parallel to the imaginary axis in the A-plane (see 
Fig. 3). Upon recurring to the real axis, i.e., A = a, Eqs. (2.5) and (2.6) are used to 
construct E(a, x) and consequently k $l’*W a &x). For convenience let us use Miller’s ( , 
notation to express the recurrence relations in terms of the complex function 

WA, 2) = D - iA - 1,2(z). (3.11) 

With this substitution, Eqs. (3.1)-(3.3) now have the form 

U(i(A + i), z) - zU(iA, z) - (iA + j) U(i(A - i), z) = 0, (3.12) 

U’(iA, z) + (z/2) U(iA, z) + (iA + 4) U(i(A - i), z) = 0, (3.13) 

U’(iA, z) - (z/2) U(iA, z) + U(i(A + i), z) = 0. (3.14) 

The asymptotic form of U(iA, xe-ni’4) for /A 1 --f co, larg(iA + +)I < rc/2 and fixed X, 
O<x < co, is [7] 

U(iA, xeCnu4) - 2-l’* exp[$(---iA - 4) ln(iA + $) (3.15) 

f (iA + ;)/2 - (iA + 4)” xe-““4] x [I + 0 liA/-“‘I. 
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If A = a - iN, then for N + ) a j, U(M, xeezV4) becomes an oscillating function whose 
modulus decreases exponentially Iike 2-r”‘NSV4 exp[-(N/2)(ln N - 1) - mx]- If 
A = a + iN the modulus increases exponentially like 2-“‘N- 1’4 ex~~(N/2)(lu N - 1) -+ 
-mx]. Therefore, to use the recurrence relation (3.12) directly, the starting values 
should be evaluated at A = a - iN, where N is a positive kinteger which depends on a 
and X. Recurring in the forward direction, the index is raised N times to determine 
ujia, Xe-n”/4)[a-ia-l,lz(xe-=u4)]. 

In addition to D,(z), other solutions to the recurrence relations (3.1)-(3.3) are 
e euniD-y- l(+iz). If A = a - iN then II_ iA _ 1,2(xe-n”4) decreases 
exponentially faster than the other solutions to zero as N + co for fixed x > 0. 

4. EVALUATION OF U(a,x) AND V(a,x> 

Use of Olver’s asymptotic formulas together with the recurrence relations 
constitutes a convenient and accurate algorithm for the evaluation of the geuera~i~~d 
harmonic oscillator functions U(a, x), V(a, x) and their derivatives for wide ranges of 
both variables. By performing the calculations in double precision arithmetic on a 
Univac 1182, correct values of the functions and their derivatives are obtained to 14 
significant digits. When x is in the neighborhood of the transition point 2 G and a 
is large and negative, there is a decrease in precision that we will discuss at the end of 
this section. The choice of the method depends solely on the value of a, which we 
have divided into two complementary domains: 

a>40ora<-41 Asymptotic Region, 

-41 <a<40 Complementary Region. 

When a falls within the asymptotic region, Qlver’s formulas are employed d~rect1~ 
When the functions are needed for non-asymptotic ,values of a, the asymptotic 
formulas provide the starting values for the recurrence relations at the large initial 
indices a, . These have been experimentally determined: 

a +=a+N>:O, w& x)9 

a- =a-M<--41, V(a, x>- 

In the case of U(a, x), the function and its derivative, both evaluated at a+, are first 
used to obtain U(a+ - 1, x) from Eq. (3.7). The index is then lowered N - 1 times to 
a employing recurrence relation (3.5) directly backwards. The symmetry of the 
parabolic cylinder functions with respect to x (see Fig. 1) makes it necessary to 
develop an algorithm for positive x only. The computational algorithm is summarized 
in Fig. 4. 

For completeness we will now specify which of Olver’s asymptotic series are 
employed in the algorithm and comment on any difficulties that arose in their 
evaluation. Since we used more terms than Olver originally presented, we ave 



222 SCHULTEN, GORDON, AND ANDERSON 

FIG. 4. Computational methods to evaluate U(a, x) and V(u, x) and their derivatives. 

recorded the necessary expansion coefficients in Table I (see also the Appendix). The 
asymptotic representations are derived from an analysis of the normal equation, 

$ wcp, t) = p4(t2 - 1) W(& t), 

where ,u and t are complex, and 1.~1 s 0. 

(4.1) 

For a positive, (4.1) is brought into the form of the real standard differential 
equation for U(a, x) by the following transformations of the dependent and 
independent variables: set t = -iz, p = iv and y(q, z) = w(iq, -iz) to obtain 

-$ Y(% z> - r4(z2 + 1) Yh z) = 0, (4.2) 

and x = zq fl, a = $r’, ~(a, x) = ~(6, x/2 \/;F) to obtain 

-g y(u, x) - ($x2 + a) y(a, x) = 0. (4.3) 

A satisfactory pair of solutions for (4.3) when a is positive is U(u, x) and U(u, -x). 
To preserve Olver’s notation, the asymptotic formulas are more conveniently written 
as functions of q and z, and in the following section, we will denote U(a, x) 
equivalently by U(#, zy fi). 

Equation (4.3) exhibits no transition point characteristics for real, positive a, and 
the functions can be expressed in terms of elementary functions [21]: 

U(u,x)=U $q2,vz$ ( ) 
(4.4) 



TABLE I 

Coefficients for the Polynomial Functions u,(z) and u,(z) in Common Denominator Form’ 

s k D u, ; zk v, : Zk 

1 1 24 -6 6 
3 1 1 

2 0 1152 145 -143 
2 249 -327 
4 -9 15 

3 1 414720 -259290 259290 
3 -151995 238425 
5 -28287 -36387 
I i8189 18189 
9 -4042 -4042 

4 0 39813120 12773113 -12118727 

2 122602962 -132752238 
4 50938215 -57484425 

6 -154982 -151958 
8 -321339 551733 

10 72756 -121260 

5 1 6688604160 -34009066266 34009066266 
3 -119582875013 130919230435 
5 -37370295816 35213253348 
7 4433574213 3832454253 
9 -3630137104 -3750839308 

11 1994971575 2025529095 
13 -6 17950920 -617950920 
1.5 82393456 82393456 

6 0 4815794995200 12434112343271 -12052415368249 
2 301898378571021 -311455283274099 
4 586168675568136 -624610264486464 
6 124486509070161 -135687713265279 
8 -1534634176464 2OlS551573176 

10 414229331745 -774637440975 
12 -244475667255 43521162454s 
14 82‘496447820 -139965883380 
16 -11123116560 18538527600 

7 1 115579079884800 
3 
5 

-10005934025910666 10005934025910666 
-86244319713347575 89579631055317797 
-108168741079020387 L13744015324794125 
-16971937888903074 20079365070264138 
-1244028561323341 -1531341334173449 

1500261393316578 1514355184823118 
-1153987181404935 -1164406579029195 

615745509685937 620383849291457 
-217738570740306 -218405957733906 

45901168957896 45901168957896 
-4371539900752 -4371539900752 

9 
I! 
13 
15 
17 
19 
2! 

” Ref. ] 3 1. 
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The auxiliary function g(q) is calculated from the asymptotic expansion 

1 

go- 
2U/4)r12+1/4e+(1/4h2 -(l/2)sz+1/2 v 

( 
1 +Jf$++)~ (4.6) 

where g(q) = e ni(1’4+(1’4)q2)g(ir), and c(z) is given by 

c(z) = +z(z’ + 1)“’ + f In[z + (2” + 1)1’2]. (4.7) 

The functions z&(z) and rYS(z) are defined in terms of the polynomial functions u,(z) 
and us(z) 

z&(z) = iSus(-iz), 

27Jz) - i"u,(-2-z). 
(4.8) 

It is a tedious but straightforward exercise to determine the coefficients u,(z) and 
v,(z) from a set of recurrence relations given in the Appendix. We record the coef- 
ficients for the first seven functions in Table I [3]. The constants g, can be obtained 
from Table I as explained in the Appendix. The branches of the multi-valued 
functions are well defined upon specifying arg ,u = 77/2 (arg r = 0) and zse”“‘S(n/2), 
the domain shown in Fig. 5a. When x > 0, Eq. (4.4) is a valid asymptotic represen- 
tation for the linearly independent solution U(a, -x). The corresponding asymptotic 

a 

z-Diane a>0 
+lTJ 

e2 S(?)Domain 

b. 

z-plane, a ~0 
T(o) Domain 

A 

FIG. 5. Domain of asymptotic expansions for (a) U(#, qz fi), where $$=a, and 

(b) U(-fq”, qz fi) and V(-{q’, qz fi), where f$ = --a. 
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formula for V(a, x) can be straightforwardly derived by substitution of the 
expressions for U(a, X) and U(a, -x) into (2.3). 

When a is negative, the change of variables t = z, and ,U = n, followed by n2 = -2a 
and x = ylz fl, again transforms (4.1) into (4.3). However, Eq. (4.3) now ~os~eases 
two real transition points at xTP = 12 &$. Olver’s asymptotic expansions for 
U(a, X) and U’(a, x), which are uniform for all x to the right of the left band tran- 
sition point, are in terms of Airy functions, Ai(~~‘~c) and 

W(a, x) = W 

where Q(C) = (C/(z” - 1))“4. The variable [ is given by 

and 

jC3” = fz(z” - l)u* - { ln(z + (z’ - 1>*/“> 

&-[)3’2 = ‘, arccos(z) - {z(z’ - 1)“” 

for z > 1 

(4% 1) 

for 0 q 2 < 1 

with [ = 0 at the turning point z = 1. The coeffkient functions A,(<), I!,(<), Cs(Q, and 
II,([) are determined from the series 

A&-) = ;’ b,C-3*2-&g,,(z), 
k-=0 

Zs+l 
(4.12) 

2s 

where do(z) = 1, dS(z) = u&)/(z” - 1)3Si2, SS(z) = vS(z)/(z2 - 1)3@ an 
(2m + 1)(2m + 3) a.- (6m - 1)/m! (144)m, b, = -((6m + 1>/(6m - 1)) a,,,, with 
a,= 1. 

The analogous expansion for V(a,x) follows immediately from 
for o(a, x) in [2 1 J on dividing by r(j - a). 
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The multi-valued functions are well defined and the above expressions valid for 
z E T(O). T(0) is the unshaded region in Fig. 5b. 

As x approaches the right hand transition point 2 m = xTP or as z -+ 1 the factor 
(W’- w/” = w3 remains well defined and has a finite value at z = 1. However, 
evaluation of the series for A,, B, , C, and D, (Eq. (4.12)) becomes ill-conditioned as 
X, is approached. Near z = 1 the terms in the series, e.g., b,,,[-3*Z3?2s-m+ ,(z) are 
large with alternating signs, while the series sums are much smaller than the 
individual terms. The error in the sums becomes worse the larger s is. Since values 
for the higher derivatives of the Weber functions are easily obtained via the 
differential equation, the problem is -circumvented by applying a Taylor series 
approximation within the transition region 

z,= l-6, < 1 < 1 +8*=zz. 

For x within the correponding region, the asymptotic series Eqs. (4.9)-(4.14) are 
evaluated at zl, and the numerical integration to the point x is completed using a 
Taylor series expansion which includes seventh-order derivatives. Use, however, of 
the Taylor series produces only single precision values of the functions (outside the 
transition region the algorithm generates double precision values as shown in 
Table II), and clearly a table of values for A,(O), B*(O), C,(O) and D,(O) would 
improve the calculation. 

A further problem arises upon evaluating the functions at their zeros using the 
asymptotic expansions in terms of Airy functions. For large negative a, the functions 
iY(a, x) and ?&z, x) [ V(a, x) J are rapidly oscillating increasing functions when x is 
between the transition points f2 6, i.e., the classical region. Their magnitude is 
roughly determined by the factor 2nYzg(r) in Eqs. (4.9) and (4.13), and 
asymptotically, it behaves like 2- lj4--a/*T(1/4 - u/2). Zeros of the functions are 
obtained when the sums appearing in the brackets are zero. If this sum is not exactly 
zero a large absolute error will result because of the factor g(q). The relative error, 
e.g., the calculated value of V(a, x)/U’(u, x) at the zeros of lJ(u, x), does, however, 
remain small (<10-14). This difficulty is most easily remedied by scaling the 
functions to order unity or by placing a tolerance on the sums for x within the 
classical region. Since we required only relative values of U(a, X) and &u,x) at 
different values of x for fixed a, we omitted the factor g(q) thereby altering the nor- 
malization. 

The accuracy of the calculated functions was determined by a variety of methods. 
To obtain double precision accuracy for small x, it is necessary to include eight terms 
(s = 7) in the 1 e ementary function expansions (4.4) and (4.5) and four terms (s = 3) 
in the Airy function expansions (4.9), (4.10), (4.13), and (4.14). For large T, the 
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TABLE II 

Comparison of Computed to Exact’ Values at U(-n - l/2, x) 

x U(-2.5, x) q-5.5,x) U(-10.5, x) 

0 -1.00000000000003 
- 1.00000000000000 

1 0.0000000000000 
0.0000000000000 

5 (-2) 4.63308992694651 
(-2) 4.63308992694650 

10 (-9) 1.37490644263144 
(-9) 1.37490644263144 

20 (-41) 1.48431031443232 (-37) 1.16077530679778 (-31) 3.39561760425665 
(-41) 1.48431031443231 (-37) 1.16077530679778 (-31) 3.39561760425668 

0.0000000000000 
0.0000000000000 

4.67280469842844 (+2) 9.470217522I4830 
4.61280469842843 (+2) 9.47021752214828 

3.76438556564404 (~2) 3.46863999197395 
3.76438556564403 (+2) 3.46863999197395 

(-6) 1.25199813942651 (-2) 8.47021745898525 
(-6) 1.25199813942651 (-2) 8.470217458Y8523 

(+2.) -9.45~000000~023 
(+2) -9.45000000000000 

’ The exact values, obtained from Tables 22.12 and 22.13 in \I], are written below the computed 
values. 

same precision is possible using fewer terms. For fixed a, evaluation of the 
Wronskian 

W{ U(ff, x), Y(ff, x)} = (2/z)“’ 

or 

W( U(a, x), qa, x)) = (2/n)“2 r(; - a) for a<0 

W( U(a, x), U(a, -x)} = (27r)“2/qn + f) for a! * 0 

as a function of x shows the double asymptotic nature of Olver’s expansions, i.e., the 
accuracy increases with increasing x and a. For x = 0, the calculated values of 
U(a, 0) and V(a, 0) were compared to the analytic expressions in [ I]: 

U(a, 0) = 6 
2*’ ’ ““r(3/4 + a/2) ’ 

V(a, 0) = 
2a/2 + 1’4 sin n(3/4 - Q/2) 

q3/4 - a/2) * 

The zeros of the functions U(a, 0) and V(a, 0) can easily be obtained from these 

expressions and serve as an additional check. For small x and a, the computed values 
were in agreement to all places with the values given in the 5-figure tables for U{Q, x) 
and V(a, x) in [I ] and the &figure tables for U(a, x) in [ 131. When a is a negative 
half-integer, U(--n - 4, x) can be expressed in terms of the Wermite polynomials 

581/42/2-2 
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H,(x/v/z> (see Eq. (2.4)). Table II shows a comparison of the computed to the exact 
values. The range of x over which the algorithm can be applied is determined by the 
argument of the Airy functions in the asymptotic expansions, e.g., Ai(n”‘“[). For large 
positive x, ~“~4 is essentially independent of a, and Ai(yq3c) behaves approximately 
like e-x2/4. To implement the algorithm on a Univac 1182, one must limit x to the 
region 0 < x ,< 45. 

5. EVALUATION OF W(u,x) AND E(a,x) 

As with the functions U(a, x) and V(a, x), one would like to use Olver’s uniform 
asymptotic series to evaluate k ‘V2W(a, +x) or E(u, x) for large magnitudes of a and 
devise a recursion scheme, which is dependent on a only, x being treated as a 
parameter, to cover the complementary region of non-asymptotic values ofu: 

a<-40oru>20 Asymptotic Region, 
(5.1) 

-4O<u<20 Complementary Region. 

We have already outlined such a scheme in Section 3 involving the complex 
recurrence relations for U(L4, xe --lrV4), where A = a - iN. For large values of the 
complex parameter A, Olver has developed asymptotic series for U(M, z) and its 
derivative which are uniformly valid with respect to the z variable. For a in the 
complementary region and z = xKnu4, these complex asymptotic series are used to 
generate values of U(iA, z) and U’(M, z) at A = a - iN which are subsequently 
employed in the recurrence relation (3.14) to obtain U(i(A + i), z). The direct forward 
recurrence of Eq. (3.12) N - 1 times produces U(iu, z), and U’(iu, z) is determined at 
the end from Eq. (3.13). Substitution of U(iu, xe -nQ4) into Eq. (2.8) gives the desired 
function E(u, x). 

Olver’s expansions for U(iA, xewnV4) and W(u, *x) are derived from the normal 
equation 

3 w(p, t) =p4(t2 - 1) W(P, t) 

in which p and t are complex variables. The following change of variables transforms 
(5.2) into the desired form: set t = -iz, y = emid4~, and y(q, z) = w(ye+“‘/4, -iz) to 
obtain 

2 

-$ Yh z> = -r4(z2 + 1) Y(% z) 

and x = qz fl, A = --in’, y(A, x) = y(dz, x/2 fl) to obtain 

(5.3) 

$~(A,x)=-(ix’--A)J@,x). (5.4) 
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As stated in Section 2, the principal solution of Eq. (5.4) is U(iA, xe-““4) where we 
have made use of Miller’s notation 

When A takes on complex values, A = a - iN, (5.4) exhibits no real transition point 
characteristics, and the asymptotic series for U(iAL, xe-““4) can be expressed in terms 
of elementary functions. The expansions when Re(A) is negative are [Zl] 

and 

The functions g(y), f(z) are as defined in the previous section. The polynomial 
functions u,(z) and v,(z) are given in the Appendix and their expansion coefflcie~~s 
for s < 7 are recorded in Table I [3]. The region of validity of the above expression is 
z E eXV2S(arg p), where arg ,u varies with N as follows: 

O<argv<$, 
1 

where -- *==a-iN, a<& 
0 

The domain S(argp), with the appropriate branch cuts, is shown in Fig. 6a, 
When Re(A) > 0, and Im(A) > 0, the corresponding transformation of varia 

which lead to asymptotic series for U(iA, eMfd4x) is 

q = en”%, z = t, 
x=qzfi, A = frj”e 

(5.9 

The series expansions in terms of these redefined variables are [21] 

u i$ 
-,e 

g(qe-~i14) eit'*I a, 
GO> 

N 
2 (2” - 1)“” szo is @2 _ 1)(3/2's * + 9 
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z-plane.a<o a 

-4 -3 -2 -I 

FIG. 6. Domain of asymptotic expansions for (a) U(--i#/2, exp(-h/4) zy fi) and (b) 
lJ(i$/2, exp(-h/4) zq &). (c) D omain of asymptotic expansions for W(f$, iqz ~5). 

ur i%,(t) 
cz” _ q’“2’s * + y (5.11) 

where t(z) = iz(z’ - 1)“’ - f In[z + (z’ - l)“‘]. 
The range of the arguments of q and p as a function of N are 

O<N<co, 

o>argrl>+ where 
1 

1q2=a-iN, a>O, (5.12) 

The branch cuts that define the multi-valued function T(z) and form the boundaries 
of the domain S(argp) are labeled in Fig. 6b. 
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Evaluation of the complex function U(iA, xewnV4) for subsequent use in the 
recurrence relations with a complex index is only necessary when the energy 
parameter a lies within the complementary region defined in (5.1). When a < -40, 
the functions k’1’2W(~, fx) can be evaluated directly from the components of E(a, x) 
(A real) using (2.7), (2.8) and (5.6). When a lies in the positive asymptotic range, 
a > 40 kT”‘W(a, ZIZX) and their derivatives are computed by Olver’s real , 3 unifoa 
asymptotic series in terms of Airy functions: 

(5.14) 

js.rs> 

(5.16) 

where W’(a, -x) = dW(a, -x)/dx and l(q) = 2”2enrrY8ei(O(a”2-iJ8)g(l?e-nV4) with the 
#(a) = arg r(+ + ia) (see Section 2). 

The expansions are valid for z in the region T(--n/4), where arg p = --7~/4 and 
arg q = 0 (Fig. 6~). 

The expansions coefficients A,(<), B,(c), C,(c) and D,(f) are evaluated by the series 
given in Eq. (4.12). As explained in Section 4, these series become ill-conditioned as 
the transition point (here xTP = 2 fi) is approached. Near z = 1, there are heavy 
cancellations in the sums which become worse the larger s is. Again the difficulty is 
circumvented by employing a- Taylor series approximation to the Weber functions 
when x is in the neighborhood of a transition point. Use, however, of the Taylor 
series produces function values at xTP which are the least accurate in the entire 
algorithm (8 vs 11 significant digits), and clearly a table of values for A,(O), B, 
C,(O), and D,(O) would improve the evaluation. 

The asymptotic series for W(a, ix) and W’(a, +.x) [Eqs. (5.13)--(5.16)j have 
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variable accuracy over the asymptotic region, as was determined from evaluating the 
Wronskian and spot-checking against expansions for large and small x found in the 
NBS handbook [l]. The accuracy of calculations performed with double precision 
arithmetic on a Univac, 1182, expressed as significant digits, is indicated in Fig, 7 for 
the three term (s ,< 2) and four term (s < 3) series. The accuracy increases with 
increasing ?c since lim,,.A, -+ 0 for s > 1 and lim,+, B, -+ 0. At the origin, the coef- 
ficients A,, B,, C,, D, are of order 1, e.g., A, (t = 0) = CkZO b2m&,fmd(0)2s-2m, and 
the asymptotic series, truncated at the jth term, are correct to 0[ 1/(2a)“+ “1. 

When a is in the negative portion of the complementary region (5.1), the above 
algorithm with s = 6 in Eqs. (5.6) and (5.7) [e.g., the series includes terms up to U, 
and V,, and j = 2 in the series for g(r)-’ Eq. (4.6)J generates better than single 
precision values of ,??(a, x) or equivalently k*:*W(a, &x). The number of steps 
needed for the recurrence process as a function of a and x is given in Table III. For a 
in the positive portion of the complementary region, similar accuracy is obtained 
except when x is in the limited range 0 < x < xrP = 2 & (e.g., x in the so-called non- 
classical or exponential region). For x < xTP numerical difficulties exist in deter- 
mining the imaginary part of E(u, x) from U(iu, xe -ZV4) which is obtained from the 
recurrence relations. The problem arises from the disparity in size between the real 
and imaginary components of E(u, x) (see Fig. le), 

Re E(u, x) k-‘/*W(u, x) 
Im E(u, x) = k”W(u, -x) 

- 2ena, a >o, O<x&x,. 

A i, 

:: 
:! 

,' ,I 

80 l3 
I131 I I 

/ >13 1131 7131131 

Exponential ’ ’ : ; 

Region f/T. P Regron 

60 
v/13 (131 )I >13 (131 >131131 

I 
'i 

a ,‘I Oscillatory 
l’,’ Region 

I)/ 

20 ” 
(131 !,  13 1131 131131 

,'I' 

,I!' 
1,' 

/, 

20- 
9/10 (11) ;: >ll (131 >12(131 

,',f 
g/10 1111 10/111131 

lo- 
70 191 ,:' 

,I 
/,' 

4' 
/' 

0- - 

10 100 500 
X 

FIG. 7. Accuracy (number of significant digits) of 3 (4) term asymptotic series for W(a, ~tx), a > 0, 
Eqs. (5.13) and (5.15). 
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TABLE III 

Recurrence Index N for U(M, ~e-~~‘)o~ A = a - iN 

a x N 

233 

-40 <a (20 o<x<20 60 

2o<x<ioo 10 

-4O<a <4 100<x~200 IQ 

- 2<a<2 2OO<x<500 4 

’ U(L4, XC~@‘) is evaluated from Eq. (5.6) for a < 0 and 
Eq. (5.10) for a > 0, using s = 6. g(g) is determined from 
Eq. (4.6) with j = 2. 

Near the origin, the phase of E(u, x) is extremely small while the phase of 
U(if2, xeunu4) . pp IS a roximately -748 - $/2 (see (2.7) and (2.8)). Round-&f error due 
to the ,almost complete cancellations of the phases between U(ia, xeenu4) and the gre- 
factors, leads to loss of accuracy in evaluation of Im @a, x). 

There are a number of ways to circumvent this problem. Our solution is to employ 
the complex recurrence relations in the exponential region, 0 < x < 2 &> to obtain 
just the dominant real component k- “‘I+@, x) and k- “‘lV’(a, x). The ratio 
IV’(a, -x)/w(c, -x) = y can be evaluated from Miller’s [ 181 non-linear differential 
equation for the derivative-log function, 

-g+ y2+ 1/x2-.=0, 

where 

w’(G 0) 
y” = W(a, 0) = - 

2”2 IRi + %)I 
II-(+ + +2)/ ’ 

using fourth-order 
Wronskian relation 

Rung+Kutta integration with stepsizes <O.OOS. From the 

W(u, x) W’(a, -x) - W(a, x) = 1 
W(a, -x> W(a, --A?) 

one can solve for 
fashion. 

lV(a, -X) and subsequently W’(a, -X) in a numerically stable 

The computational methods to evaluate at least single precision values [values 
correct to at least eight significant digits] of the parabolic cylinder functions 
kF1’* W(a, +x) and their derivatives are summarized in Fig. 8. The calculations were 
performed using double precision arithmetic on a Univac 1182. Within the 
exponential region 0 < x < 2 fi, for 1 < a < 20 only the functions k-“*W(a, x) an 
k-“2 W’(a, x) are obtained from the complex recurrence relations for E(A9 x). The 
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FIG. 8. Computational methods to evaluate k F”2W a &x) and their derivatives. ( , 

imaginary components kvz W(a, --CC) and k’ V2 W’(a, -x) are discarded and 
determined instead from Miller’s derivative-log method discussed above. 

The accuracy of the algorithm when a is in the complementary region was deter- 
mined by monitoring the Wronskian W{ W(a, x), W(a, --A-)} and by comparing the 
function values to existing tables and expansions. For small X, the computed values 
agree to all places given in Miller’s g-figure tables of W(a, Z!CX) [ 181. For small j a j 

TABLE IV 

Comparison of Computed to Exact’ Values of W(a, 5x) 

a 

-2 

-1 

0 

1 

2 

W@, qb W(n, 250) W(a, -250) 

(-1) 6.0027462289575 (-2) -1.3602243 109050 (-2) -8.8480095 155775 
(-1) 6.0027462289575 (-2) -1.3602243109048 (-2) -8.8480095155776 

(-1) 7.3148109024543 (-2) +6.2184466092715 (-2) -6.4319823309571 
(-1) 7.3148109024543 (-2) t6.2184466092718 (-2) -6.43 19823309568 

1.0227656721132 (-2) +5.0615076282762 (-2) -6.6196245716256 
1.0227656721131 (-2) +5.0615076282764 (-2) -6.6196245716251 

(-1) 7.3148109024542 (-2) +1.2849662395742 (-1) -1.2820788333744 
(-1) 7.3148109024543 (-2) t1.2894662395742 (-1) -1.2820788333741 

(-1) 6.0027462289575 (-3) f2.0353322718464 1.9536775486873 
(-1) 6.0027462289575 (-3) +2.0353322718463 1.9636775486873 

a Exact values are listed below the computed values. 
* The exact values are from Eq. (19.17.4) in [ 11. 
c The exact values are from Miller’s asymptotic expansions for modulus and phase, Eqs. (345)-(360) 

in 1181. 
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and large X, i.e., x2 * 4~2, a region in which k ‘Fv2 W(a, *tx) are oscillating functions, 
the values have been checked against the Miller’s modulus-phase expressions [I, 1 

k- ‘I2 W(a, x) -t iklf2 W(a, -x) = Fe”X, 

k- y2 W’(u, x) + ikU2 W’(a, -x) = Ge”*, 

A typical comparison is shown in Table IV. For 0 < la j Q 4, x > 200, 
exponential expansions, Eqs. (5.6), (5.7) and Eqs. (5.1(P), (5.11) with N< 4 agree 
with Miller’s expressions to at least 11 significant digits. Such an agreement is not 
surprising since Olver has shown in [23] that his expansions for U(a,x) have a 
double asymptotic property, one for large a and one for large x. 

APPENDIX: EVALUATION OF COEFFICIENTS FOR A~YMPTOTK R~P~~ENTATI~~~ OF 
WEBER'S PARABOLIC CYLINDER FUNCTIONS 

The coefficient functions u, and U, in the asymptotic series representation of 
U(a, X) for a > 0 and E(A, x) for complex A are either totally even or odd 
polynomials of maximum degree 3s. We shall denote the argument of u, a 
generally by z and evaluate them by a set of recurrence formulas [21]. 

The recurrence formula for u,(z) given in (4.8) is 

where 

(2’ - 1) U:(z) - 3szu,(z) = rs- r(z), (A-1) 

8r,(z) = (32’ + 2) u,(z) - 12(s + 1) zr,_,(z) + 4(z2 - I> r;wl(z) (A-2) 

and U,,(Z) = 1. 
The functions T,(Z) are determined first from Eq. (A.2) and then substituted into 

(A.l). Since the coefficient functions us(z) are polynomials of degree 3s, they can 
derived from Eq. (A.l) by matching powers of z. For s even, the coefficients of 
leading term .z3’ in us(z) are zero. 

Once u,(z) and rs(z) are known, the coefficient function v,(z) is evaluate 
relation 

v&z> = u,(z) f h,-,(z) - rs-2(z), 

where v&z) = 1. 
Olver provided the functions us(z) and v,(z) for s = 0, 1,2, 3. In order to increase 

the accuracy of the asymptotic series for moderate values of a, at least two more 
terms should be included. In Table I we have recorded the coefficients for the 
polynomials for s = 1, 2,..., 7, obtained from solving (Al)-(A.3). 



236 SCHULTEN,GORDON,ANDANDERSON 

The constants g, appearing in (4.6) are defined to be 

g, = lim us@> 
~z~-Ko (z’ - 1)‘3’2’” * 

Hence g2$ = 0 and g,, + 1 is the coefficient of the leading power z6’+ ’ in uzS+ 1(z) and 
can be obtained from Table I. 
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